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Editorial
The ultimate goal of radiation therapy is to deliver a pre-
scribed dose to a tumor precisely while minimizing dose to
the critical structures. Radiation dose is the core of the re-
gime, which also includes dose calculation and delivery of
radiation beam. The former is the key component of a treat-
ment planning system. Its accuracy directly impacts the
quality of a treatment while its speed heavily affects the
clinical flow. This review is focused on photon beam dose
calculation algorithms, although some basic concepts can
also be applied to other beam modalities.

Why is dose calculation required in radiation therapy? One
of the reasons is that we need to plan and simulate the
treatment prior to the actual delivery of radiation beam to
the tumor. To kill a tumor with radiation, a specific dose
needs to be absorbed by the tumor. To make sure this tumor
gets the prescribed dose, we need to perform dose calculation
by managing radiation beams which are characterized by
various parameters in the treatment machine used to deliver
the radiation. This process is called treatment planning. In
modern radiation therapy, treatment planning is generally
performed with computing software by using the patient’s
images to identify and locate the anatomical structures and
the machine parameters to simulate the actual treatment.
The result of simulation gives the calculated doses for the
target as well as for other regions of interest. The accuracy of
dose calculation and the strict quality assurance program is
essential in order to make sure that dose delivery to the tu-
mor is 100% or close to 100% of the calculated dose.

Radiation dose is defined as the total amount of ionizing
radiation energy absorbed by the material or tissues per unit
of mass. Hence, dose calculation is computing the energy

absorbed by the media at any points that radiation beam
particles pass or may not pass through, where various physi-
cal processes are underway due to the interaction between
beam particles and the media. At any point of interest, the
dose is contributed by primary beam particles interacting at
the point, then scattering from other interacting points in
the patient, and the non-primary beam particles leaking
from the gantry head.  A good dose calculation algorithm is
the one that not only can take into account accurately all the
physical processes involved in the beam particle-media in-
teraction so that the calculated dose is accurate, but also is
fast enough to be used in clinic. Hence, accuracy and speed
are the two key factors for a dose calculation algorithm.

The dose calculation algorithm for radiation therapy has
been evolving rapidly since the 1950s, mainly attributed to
the rapid development in the fields of particle/nuclear phys-
ics and computer science which enable us to better under-
stand the physical processes involved in the beam parti-
cle-media interaction and to simulate and calculate doses for
a complex system within a short time period. Figure 1 illus-
trates this evolution. From the developing history of dose
calculation and the mechanisms used for the dose calcula-
tion, we can categorize the dose calculation algorithms into
three major groups: (1) correction-based; (2) model-based;
and (3) principle-based.

Correction-based algorithm is a type of empirical dose calcu-
lation which interpolates or extrapolates dose from some
basic measurements in water such as percentage depth dose
(PDD) for different field sizes at a certain source surface dis-
tance (SSD). The introduction of concepts of tissue-air ratio
(TAR) 1, tissue-phantom ratio (TPR) 2, and tissue-maximum
ratio (TMR) 3 made this algorithm rather successful in the
regime of homogenous media. A typical example of this al-
gorithm is Clarkson’s technique 4 and IRREG5-6 that are still
commonly used in clinic for manual dose calculation and in
some commercial software used for second-hand dose check
(RadCalc, Lifeline Software Inc., Austin, Texas, USA). For
homogenous media, such as water, this calculation algorithm
gives rather accurate results. For a heterogeneous system
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such as a human body with bones and lungs, applying equiv-
alent beam path length can correct part of the heterogeneous
effect, but the accuracy is not enough because it cannot take
into account the lateral scattering when beam transports in
media.

FIG. 1: Evolution of photon dose calculation algorithms.

Model-based algorithm starts first from physics principles
and then simplifying the procedure describing the actual
physical transport to expedite the calculation. These physical
processes have been well studied and are unambiguous: A
beam particle interacts with media at a point, releases ener-
gy, and then is deposited or scattered away from the primary
interaction site. During this process it may create secondary
photons and electrons, releasing energy in the scattering
path. These physical processes are simplified by using a con-
volution equation that convolutes the primary photon ener-
gy fluence (terma – total energy released in unit of mass)
with a kernel that describes the contribution from scattering
photons and electrons, and the method is called the convolu-
tion algorithm.7-20 If the path length is replaced by radiolog-
ical path length to describe the inhomogeneity of media, the
method is called convolution-superposition. The details of
how to handle this convolution kernel give rise to
sub-difference algorithms that are applied in different com-
mercial treatment plan systems: Pencil Beam Convolution
(PBC)12-14, the Analytical Anisotropic Algorithm (AAA) 15,18

(Varian Medical System, Inc. Palo Alto, CA, USA ), and Col-
lapse Cone Convolution (CCC) algorithms16, 19, 20 (Pinnacle,
CMS XiO, etc). For homogeneous media such as water, there
is not much difference in accuracy for these calculation algo-
rithms. For heterogeneous media, radiological path length is
used in place of the actual length to account for the differ-
ence in electron density from water, and convolution evo-
lutes to convolution-superposition. The difference in the
accuracy of dose calculation on heterogeneous media is de-
termined by how well the kernels of these algorithms can
simulate the actual scattering. In PBC, the lateral scattering
is considered to be homogeneous, and the inhomogeneity
correction only happens in the longitudinal direction which
is accounted for by using the equivalent path length con-

verted from mass attenuation (hence the electron density of
media).

For AAA and CCC, both consider the heterogeneous effect
not only in the longitudinal direction, but also in the lateral
one. AAA uses Gaussian functions to describe the mean het-
erogeneous effect in four lateral directions (± x and ± y).15, 18

In CCC, the kernel is replaced by a certain number of dis-
crete elements and the mean for all elements is used to
simplify and reduce the calculation time.16, 19, 20 Many re-
search results imply that CCC is more accurate than AAA
when an inhomogeneity correction needs to be applied21-23,
which indicates that CCC handles the lateral scattering bet-
ter than does AAA in a heterogeneous environment. Mon-
te-Carlo algorithm is not a new technique but has been used
as a benchmark to check the accuracy of other dose calcula-
tion algorithms.22, 24-28 Starting from the first principles of
physics, Monte-Carlo simulates the actual physical processes
in two major steps which are initiated by a random number
seed generation in the target: (1) the radiation beams travel
through the accelerator gantry head including the collimator
system; (2) collimated beam particles from the gantry head
travel through and distribute dose in the patient’s body. As
Monte-Carlo simulates all the real physical processes in
which the beam particles are involved during transportation,
the result of its dose calculation should be very accurate.

However, the accuracy is mainly determined by the number
of events generated, and this statistical uncertainty is pro-
portional to the inverse square root of the event numbers
scored.29 For this reason, the speed of Monte-Carlo dose cal-
culation is slow and the process is very time-consuming.
The rapid development of computer CPU power greatly en-
hances the speed of Monte-Carlo dose calculation and makes
it possible to be applied in clinic – even though only until
very recently the electron Monte-Carlo dose calculation was
just implemented into the Varian Eclipse treatment plan
system.30 The photon Monte-Carlo dose calculation is still
very slow and not feasible for use in the clinic. To take ad-
vantage of the accuracy of the Monte-Carlo algorithm and
avoid its slow speed, simplification of beam particle transport
in patient body was made, leading to the AAA and CCC al-
gorithms.15-21

Similar to Monte-Carlo algorithm, Acuros XB tries to simu-
late all the physical processes that beam particles involve –
instead of generating beam particles one by one in the simu-
lation process, Acuros XB uses a group of Boltzmann
transport equations (BTE) to describe all the physical pro-
cesses involved31, and these equations are solved using nu-
merical methods in the computer world, which is much
faster than Monte-Carlo (and even the AAA algorithm) but
still provides a comparable accuracy to the Monte-Carlo
algorithm. The Acuros XB algorithm was recently imple-
mented in the Varian Eclipse Version 10.1, and is available
in clinic.32-34
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To test and evaluate the accuracy of a dose calculation algo-
rithm, the best approach is to perform measurements and
then compare the measured results with the calculated dose
in both homogeneous and heterogeneous media. Many
works have been done to evaluate the above-mentioned dose
calculation algorithms21-23, 30, 32-42, and the hierarchy of accu-
racy is as follows:  Monte-Carlo algorithm > Acuros XB >
CCC > AAA > PBC > Correction-based methods.21-23, 30, 32-42

With Monte-Carlo and Acuro XB algorithms, you can expect
a close to 100% accuracy of dose calculation if time permits.
After more than 60 years of dedicated efforts on the dose
calculation algorithm and the development of powerful
computer CPUs, the accuracy of dose calculation seems to
meet our requirements, and the time needed for calculation
in the clinic no longer matters. Are Monte-Carlo and Acuros
XB algorithms the end of the dose calculation game? We
should not forget that the ultimate goal of radiation therapy
is to kill cancer cells while sparing normal tissues as much as
possible. A pure physical dose in non-life media, which does
not directly associate with any biological factor in tissues,
has no more significance than does a dose calculation algo-
rithm with less accuracy. The next generation of dose calcu-
lation algorithms should and is expected to include biological
equivalent dose or biological effectiveness dose, which can
take into account the actual biological effect for different
types of ionization radiation beams and different types of
irradiated tissues, and can allow physicians to relate the bio-
logical dose more closely to the treatment outcome than
what we have today. This is heavily reliant on the progress
of radiation biology. Is that going to be a simply biological
equivalent dose (BED) with Linear-Quadratic model or BED
with a more advanced model?
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