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Abstract
Purpose: We have previously developed for nuclear cross-sections of therapeutic protons a calculation model, which is founded
on the collective model as well as a quantum mechanical many particle problem to derive the S matrix and transition probabili-
ties. In this communication, we show that the resonances can be derived by shifted Gaussian functions, whereas the unspecific
nuclear interaction compounds can be represented by an error function, which also provides the asymptotic behavior. Method:
The energy shifts can be interpreted in terms of necessary domains of energy to excite typical nuclear processes. Thus the nec-
essary formulas referring to previous calculations of nuclear cross-sections will be represented. The mass number AN determines
the strong interaction range, i.e. RStrong = 1.2·10-13·AN1/3cm. The threshold energy ETh of the energy barrier is determined by the
condition Estrong = ECoulomb. Results and Conclusion: A linear combination of Gaussians, which contain additional energy shifts,
and an error function incorporate a possible representation of Fermi-Dirac statistics, which is applied here to nuclear excitations
and reaction with release of secondary particles. The new calculation formula provides a better understanding of different types
of resonances occurring in nuclear interactions with protons. The present study is mainly a continuation of published papers.1-3

Keywords: Nuclear Interactions of Protons; Threshold Energy; Bethe-Wigner Resonances; Gaussian Representation of Reso-
nance Interactions; Tunnel Effect

Introduction

The knowledge of the total nuclear cross-section Qtot of pro-
tons is an important impact with regard to sophisticated fea-
tures of therapy planning, since Qtot provides essential in-
formation of the following aspects: Decrease of the fluence of
primary protons Φpp and release of secondary particles and
their transport (secondary protons, neutrons, clusters like
H21, H31, He32, He43, heavy recoil nuclei, which usually un-
dergo either a β+ or β - decay with additional emission of a
γ-quant). With regard to secondary protons we have to differ
between two kinds, namely protons resulting from nuclear
reactions with production of heavy recoils and those protons,

which are, in reality, primary protons and have undergone
elastic and inelastic scatter by strong interactions according
to the Breit-Wigner formula. Elastic scatter by nuclear forces
is only a deflection of the projectile protons with additional
energy-momentum transfer to the whole target nucleus,
whereas inelastic scatter is connected to excitations of nu-
clear vibrations, rotations and transitions to excited states
without releasing other nuclear particles, i.e. some quantum
number will be changed. The resonances due to
Breit-Wigner formula represent the main part of the reso-
nance domain Eres according to Figure 1. Nuclear reaction
types cannot be regarded as simple resonances, they mainly
occur for proton energies E > Eres.

In previous publications 2, 3, we have developed a calculation
method based on a nonlinear and nonlocal Schrödinger
equation with a Gaussian kernel and on an interacting
many-body system containing strong interactions, spin-orbit
coupling and Coulomb interaction with inclusion of various
excited configurations. The results of these calculation
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methods, which provide excited nuclear states, virtual com-
pounds and nuclear reactions via S-matrix, transition proba-
bilities and finally, total nuclear cross-sections Qtot(E), can be
translated to the collective nuclear excitation model. This
model only uses Z and AN as parameters and suitable analytic
functions to describe all properties of Qtot(E). The complete
contents of this figure have been previously discussed. For
protons, a threshold energy ETh exists to surmount the po-

tential barrier of the oxygen nucleus. Thus for proton ener-
gies less than ETh nuclear reactions cannot occur. At E = Eres =
20.12 MeV Qtot(E) shows a maximum value, and thereafter, it
decreases exponentially to reach the asymptotic behavior at
about E = 100 MeV. According to an integration procedure 2,

6 the analytic version of Figure 1 (equation (1)) provides the
decrease of primary protons. The following integration pro-
cedure has to be carried out:
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By that, we obtain the following formula for the fluence decrease of protons:
2 1 . 0 3 21
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FIG. 1: Total nuclear cross-section of the proton – oxygen interaction.4, 5

With regard to oxygen we have to put ETh = 7 MeV (O) and Mc2 = 938.27 MeV. Equation (2) can be summarized by Figure 2.

FIG. 2: Decrease of the fluence of primary protons in water.
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FIG. 3: Nuclear potential energy of oxygen.

A further result is that in the environment of a nucleus the effective potential can be calculated by a linear combination of two
Gaussians. This is not true for longer ranges of Coulomb forces. However, this is not a simple task, since the shielding of the
nuclear repulsion by the shell electrons has to be accounted for. The nuclear potential according to Figure 3 and the related
parameters can be best calculated by equation (3), which assumes the shape:
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The units of this formula are stated in terms of units of Rstrong (range of strong interaction) according to Figure 3.

Methods and Materials
In previous publications 2, 3, we have performed the task to
calculate all nuclear properties to determine finally with the
help of the S-matrix and transition probability of all possible
configuration states the total nuclear cross-section Qtot(E) in
terms of Z and AN. The results are closely related to the Be-
the-Weizsäcker formula for the nuclear binding energy. The
old formula for the calculation of ETh and Qtot(E) according to
a previous paper will be stated in section “Summary of pre-
vious investigations”. In order to determine all these proper-
ties we have to know the threshold energy ETh, i.e. that en-
ergy necessary to surmount the nuclear potential mount
according to Figure 3. There exists also the possibility to
circumvent this threshold restriction by the quantum me-
chanical tunneling process with energy E < ETh, but this is
only a rather small effect, which leads to a little roundness of
Qtot(E) at E < ETh. This aspect will be considered in section
“Calculation procedure of the energy levels of excited states
and quantum mechanical tunneling effect for E < Eth”.

Summary of previous investigations

According to the results presented in 2, 3 we need for the
calculation of Qtot(E), at first, the threshold energy ETh as a
function of Z and AN. This function can be obtained via the

formulas (4 - 6). The second step provides the determination
of the total nuclear cross-section Qtot(E), which can be ac-
counted for by preceding studies 2, 6 with the help of equa-
tions (7 - 9). Thus the formulas (4 - 6) are necessary to de-
termine the threshold energy ETh by a balance equation of
Coulomb repulsion and oscillator model for strong interac-
tions.
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In the domain of the resonance energy Eres we obtain:
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TABLE 1: Parameters for the evaluation of equations (7 – 9).

Nucleus ETh/MeV Eres/MeV σres/MeV σas/MeV Qtotmax/mb Qtotc/mb Qtotas/mb

C 5.7433 17.5033 21.1985 27.1703 447.86 426.91 247.64

O 6.9999 20.1202 23.2546 34.1357 541.06 517.31 299.79

Ca 7.7096 25.2128 35.6329 58.4172 984.86 954.82 552.56

Cu 8.2911 33.4733 47.6475 93.2700 1341.94 1308.07 752.03

In the domain of the transition to the asymptotic behavior of the total nuclear cross-section the following formula is applicable:

tot tot tot tot

c c as c as cQ Q (Q Q ) tanh[(E E )/σ ] (if E E )------ (9)     

tot tot tot tot tot

c c max as res c as max c
Q I Q ;σ σ (Q Q )/(Q 2 ln(I ) )------ (9a)       

In order to give a qualitative motivation of the new calcula-
tion method we consider again Figure 1. At first, we have to
repeat that Qtot(E) is not only restricted to proper nuclear
reactions of protons with release of secondary particles: Thus
for proton energies E > ETh (the threshold energy ETh

amounts to 7 MeV) we can verify a rapid increase of Qtot up
to a resonance maximum Eres = 20.12 MeV. This behavior up
to the environment of the resonance maximum can be de-
scribed by a proper Gaussian distribution. What happens in
this domain? Elastic scatter of proton at the nuclear potential
is dominated by strong interaction and mediated mainly by
mesons, if the quantum state of the nucleus is not changed.
This implies that in order to satisfy energy-momentum rela-
tion only the whole nuclear adopts energy and momentum
(kinetic energy), the impinging proton is slightly deflected.
If the nucleus is also excited by vibrations, rotations or tran-
sitions to an excited configuration, then the whole process is
inelastic and by emitting γ-quanta it is damped to finally
return to the ground state. These effects are mainly de-
scribed by the Breit-Wigner formula and its generalization.6 -

8 It has to be pointed out that the secondary proton under
these conditions is still the primary proton, which is de-
flected by a slightly higher scatter angle compared to Mo-
lière multiple scatter theory.9

New calculation formulas for Qtot(E) and ETh

Figure 1 presents the total nuclear cross-section of oxygen;
we can verify that, besides the Gaussian distribution of the
environment of the maximal value Emax, after a slower de-
crease of Qtot, the asymptotic behavior is reached (this is
certainly valid for proton energies E < 300 MeV). The as-
ymptotic branch can be represented by a suitable error func-
tion erf(E), which has to satisfy some further boundary con-
ditions. This error function erf(E) results by an integration
over Gaussian resonance distributions of the energy within
finite boundaries. The transition from the domain Emax to the
asymptotic domain can either be represented by a sum of
exponential functions or by a Gaussian distribution with an
additional energy shift. In every case, this consideration in-
dicates that there exists an alternative representation of the
total nuclear cross-section Qtot(E) besides the previously
studied one according to equations (7 – 9). Thus equation
(10) provides the new formula for Qtot(E), which appears to
lead to a better access to quantum mechanical resonance
mechanisms expressed by harmonic oscillators. Equation (11)
provides all terms necessary for the determination of bound-
ary conditions of the whole problem, and equation (12) an
alternative calculation procedure for ETh. Aboundary has the
purpose to ensure that Qtot(E) assumes zero at E = ETh, since
the Gaussians do not vanish at this position. A modification
will be accounted for, when we shall include the tunneling
effect.
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Table 2 presents the corresponding parameter values to perform calculations of equation (10) with the help of equation (11). All necessary pa-
rameters of equations (10, 11) can be determined via Table 2 and the formula:

/ (1 1 )p q
p p NP C Z A      

TABLE 2: Parameters of the new cross-section formula (10) and equations (11) using equation (10a).
Parameters Pp of

formula (12)
Cp p q

wGauss 36.05 1.421 1.811

δ 0.09335 -1.621 -0.405
γ -9.155 2.396 1.763

σ res 0.925 -1.232 -1.595
σ 1 17.215 0.6375 0.31

σ 2 11.575 1.13 0.38
σas 1.074 1.745 2.102
Am 0.06257 -1.102 -1.335

wg -4.411 25.8712 -3.302

The total nuclear cross-section requires also the threshold energy ETh, which can be calculated by the following formula (12),
which is easier to handle than formulas (4 – 6):

)12(// 11  q
N

pq
N

p
Th AZDAZCE

The parameters of formula (12) are: C = 6.565304 MeV, p = -0.10368 and q = 0.00481, D = -1.2889, p1 = -0.6597, q1 = -0.6601.

TABLE 3: Calculation of the threshold energy ETh according to formula 4 – 6 (B) and present formula 12 (A).
Isotope A  ETh/MeV B ETh/MeV

C 12 6.480 6.7

C 13 6.6100 6.61

C 14 6.5701 6.51

O 16 6.9235 6.99

Ca 40.06 7.86 7.75

Cu 63.456 8.24 8.24

Zn 65.39 8.2796 8.29

Cs 136 8.949 9

Cs 137 8.9464 8.92

Calculation procedure of the energy levels of excited states and quantum mechanical tunneling effect for E < ETh

The investigations referring to the tunneling effect are as old as the quantum mechanics itself, since this theory has been used to
explain the α-decay of heavy nuclei by Gamow. In many textbooks of quantum mechanics the tunnel effect is treated in detail
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of a particle passing with energy E through a potential box V with E < V. In the meantime, some other important tunnel effects
have been studied, e.g. Josephson junctions and, recently, the H bonds between the complementary DNA strands through a
double minimum potential. 14 [Also, see reference list in Ulmer et al. 14]. After this digression, we intend to return to Figure 3,
which refers to the nuclear potential of O8 16, but all formulas developed here can be applied to other nuclei, which exhibit sim-
ilar properties of their nuclear potential. In following, we need the deflection point ξ of this figure. If we reduce formula (3) to
one Gaussian with V1 = 0, this point is easy to determine, since vanishing of the second derivation provides ξ2 = σ02/2. The de-
flection point of the nuclear potential according to formula (3) can only be obtained by an iteration procedure:

2 2

2 2

2 2 2 2

0 0 1 1( ) [ exp( / ) exp( / )] (13)d d
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In a first step, we restrict equation (13) to first-order terms; by that, we obtain a quadratic equation in terms of ξ02:
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In the next step, we have to solve a quadratic equation, too, since we insert the solution with ξ0 into the Gaussians of equation
(13) and determine ξ12 according this equation by putting ξ12 = x2, i.e. the following step is given by:
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In principle, this iterative procedure can be repeated, but stopping after step 2 is very sufficient. We now determine the energy
levels of the potential type like that of formula (3). It offers to approximate the potential by a 3D harmonic oscillator. However,
this is not sufficient, since the energy levels of the excited states are not equidistant.2 Therefore we use a nonlinear and nonlocal
Schrödinger equation, which incorporates nuclear interactions as a self-interacting field. With the help of equation 3 this gen-
eralized Schrödinger equations assumes the form:
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The coupling constant λ has to be chosen such that the dimension agrees on both sides, but it can be put λ = 1; the magnetic
interaction, i.e. spin-orbit-coupling, can be added using principles previously given.2, 3 With the help of the generating func-
tions of Hermite polynomials we are able to write equation (15) in the form:
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The equation above represents a highly inharmonic oscillator equation of a self-interacting field. Since the square of the
wave-function is always positive definite, all terms with odd numbers of n1, n2, and n3 vanish due to the anti-symmetric prop-
erties of those Hermite polynomials. For rc ≤ ξ (domain with positive curvature), the whole equation is reduced to a harmonic
oscillator with self-interaction; the higher-order terms are small perturbations:
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The solutions of this equation are those of a 3D harmonic oscillator; the classification of the states by SU3 and all previously
developed statements with regard to the angular momentum are still valid. The only difference is that the energy levels are not
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equidistant; this property can easily be verified in one dimension. The usual ground state energy is ћω 0/2. This energy level is
lowered by the term ~Φ0,0,0, depending on the ground-state wave-function. The energy difference between the ground and the
first excited state amounts to ћω 0; this is not true in the case above, since the energy levels of all excited states depend on the
corresponding eigen-functions themselves (these are still the oscillator eigen-functions!). Next, we will include the terms of the
next order, which are of the form ~ λ∙(Φ0,2,2, Φ2,2,0, Φ2,0,2):
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The additional term T represents tensor forces. The whole problem is still exact soluble. In further extensions of the nonline-
ar/nonlocal Schrödinger equation, we are able to account for spin, isotopic spin, and spin-orbit coupling. The spin-orbit cou-
pling, as an effect of an internal field with nonlocal self-interaction, is plausible, since the extended nucleonic particle has in-
ternal structure; consequently, we have to add Hso to the nonlinear term:
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Ψ is now (at least) a Pauli spinor (i.e. a two-component wave-function), and due to the term Hso the SU3 symmetry is broken.
We should like to point out that the operation grad φ acts on the Gaussian kernel K:
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The expression in the bracket of the previous equation represents a vector, and p (p → -iћgrad) acts on the wave-function. Since
the neutron is not a charged particle, the spin-orbit coupling of a neutron can only involve the angular momentum of a proton.
In nuclear physics, these nonlinear fields are adequate for the analysis of clusters (deuteron, He, etc.). The complete
wave-function Ψc is now given by the product of a function in configuration space Ψ multiplied with the total spin and isotop-
ic-spin functions.

A further access to solve the above nonlinear/nonlocal equation is obtained by the Ritz’ variation principle applied to energy
minimum. For this purpose, we start with the following set of functions:
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The expectation value of the energy is given by:
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It is now the task to determine the coefficients cj,k,l and c’j,k,l in such a way that the energy assumes a minimum value, i.e. the
following conditions holds:

, , , , , , , ,( , ' ) 0 0 ; ' 0 ( , , 0, ..., ) (23)j k l j k l j k l j k lE c c c c j k l N          

With the help of the function set (21) all integrals can be evaluated analytically. By that, the task remains to determine the co-
efficients of the function set by an iterative procedure, since equation (23) yields a third order equation of all coefficients form-
ing the wave-function. However, this so-called self-consistent field method is very familiar in many-particle problems, and,
therefore, a detailed description is superfluous. The performance of the above task provides, besides the ground state energy,
excited states for E < ETh and virtually excited states, if E > ETh. However, we are interested in the role of excited states of a nu-
cleus, when a proton can penetrate the potential wall for E < ETh and virtually excited states are only important with regard to
nuclear reaction. Therefore we now turn our interest to the tunneling effect of external protons in connection with potential
types like Figure 3.

The quantum mechanical tunneling effect must be treated in three dimensions. We denote by μ the reduced mass ‘proton –
nucleus’, then the Schrödinger equation of the problem reads:
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The boundary condition for the proton energy is 0 < E < ETh. Since a closed analytical solution is unknown, we shall make use
here of the Dyson series; this is similar to the Feynman propagator method, and easy to manipulate for plain waves and Gaussi-
ans (kernels, potentials, etc.). In absence of external perturbation, the time evolution operator reads:

0 0 0
( , ) exp( ( ) / ) (25)U t t i H t t       

Using the interaction picture of quantum mechanics and the definition of U (t, t0) according to equation (25), the interaction
term can be transformed to the expression:

1
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Based on the interaction picture, the resolution operator UI (t0, t) is given by the integral equation:
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The Dyson expansion of equation (27) provides the following expression:
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Within the restriction of our task, namely that H0 is the free-particle operator and H1 a linear combination of 2 Gaussian func-
tions (see equation (25)), the expansion (28) is easy to solve: The unitary operator U related to H0 applied to the terms of H1

again provides Gaussian terms. Since the operator U also acts on plain waves, too, the similar behavior is valid. Thus the fol-
lowing expressions have to subject to iterations (the factor α has to associate with the proper dimension):
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With respect to the Dyson expansion the terms according to equations (29, 29a) are very convenient, since iterations always
yield terms of the same structure. Please note that the kinetic energy term of the proton assumes complex values, if the im-
pinging energy is lower than the potential wall, i.e. the position probability within the positive, repulsive potential suffers
damping. Some consequences will be given in the result section.

Results

The following Figures 4 – 7 deal with the nuclei of carbon, oxygen, calcium and copper. They show that both calculation for-
mulas provide equivalent results; we use the following abbreviations: FM (former method) and PM (present method). However,
the chosen type of functions used in this communication offers new ways to analyze nuclear cross-sections due to the ad-
vantages of Gaussian functions and kernels.
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FIG. 4: Nuclear cross-section of the interaction proton – carbon nucleus; solid line: PM, dots: FM.

FIG.5: Nuclear cross-section of the interaction proton – oxygen nucleus; solid line: PM, dots: FM.

FIG. 6: Nuclear cross-section of the interaction proton – calcium nucleus; solid line: PM, dots: FM.

FIG. 7: Nuclear cross-section of the interaction proton – copper nucleus; solid line: PM, dots: FM.

The following Figures 8 – 11 show with regard to the most important nuclei in radiotherapy with protons roundness in the
environment of the threshold energy ETh and the previously assumed condition Qtot(E) for E < ETh does not hold due to the
quantum mechanical tunneling effect. This roundness can be amplified by the energy spectrum of the impinging protons re-
sulting from the beam-line and a jump of the fluence decrease of primary protons Φpp at E < ETh is prevented (see also Figure 2
with regard to the passage of protons through water). The passage of protons through other media, e.g. calcium, leads to a simi-
lar roundness.3 By that, the quantum mechanical tunneling effect can be best studied by really mono-energetic protons with
initial energy E < ETh.
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FIG. 8: Proton – nucleus (oxygen) interaction by proton energies less than 7 MeV via tunnel ling through potential wall according to Figure 4.

FIG. 9: Comparison of the tunneling probability for oxygen (solid line), carbon (dots) and calcium (dashes).

Both Figures 8 and 9 also present a way to check ranges of protons in biologically significant media, since at the end of the par-
ticle track very specific nuclear interactions occur with the help of the quantum mechanical tunneling effect. The intermediary
existence of the isotopes N713 and Sc2141 provides a tool to study proton interactions for very low proton energies in that media.
The quantum mechanical tunnel effect represents the necessary basis for these studies.

FIG. 10: Total nuclear cross-section of oxygen with in inclusion of the tunneling effect.

FIG. 11: See Figure 10 in the low energy domain with proton energy < 14 MeV.
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Discussion

Let us first consider the low energy domain, i.e. up to the
resonance maximum Eres. Thus for E < ETh only due to the
tunneling effect the projectile proton can enter the interior
of the potential wall according to Figures 9 - 11. This pro-
vides in the case of oxygen the isotope F917 as intermediary
excited state (or N713 and Sc2141 with respect to carbon or
calcium). Since E < ETh the lifetime of the excited states de-
pends on the transition probability to a lower energy state to
finally produce a γ-quant and a neutron by an exchange in-
teraction (Pauli principle) within the nuclei via a π+-meson
to yield a neutron, which can easily escape the potential
wall. The resulting processes are also described by equations
(30 – 32).

These equations are also valid for comparably low proton
energies, but with E > ETh. However, we are now located in
the energy domain E > ETh up to the resonance domain Eres.
This domain, which is referred to as Breit-Wigner resonanc-
es, is characterized by various excitations, e.g. rotations of
the whole nuclei, vibrations via proper deformations of the
nuclei and excitations to excited configurations. All these
processes are damped by emission of photons with proper
energies. It should also be pointed out that these resonances
belong to the category of inelastic scatter, but the resulting
secondary proton is identical with the primary proton. Only
the lateral scatter and energy losses are different to Molière
scatter processes. If these scattering processes occur without
nuclear excitations, rotations and vibrations, then they are
referred to as elastic nuclear scatter of the protons, which are
also contained in the Breit-Wigner resonance formula and in
its generalization 7, given by Flügge. (The original
Breit-Wigner formula 6 is restricted to scatter processes in-
duced by so-called ‘s-states’ of the S-matrix; the inclusion of
‘p-states’ and states of higher order have later been account-
ed for 7, 8). The very often used way of notation ‘inelastic
nuclear scatter of protons’ is not quite correct, since elastic
scatter processes of protons at nuclei even occur in the as-
ymptotic domain of Qtot(E).  A very important nuclear pro-
cess occurring in the same energy domain must be men-
tioned again, namely the exchange interaction of the proton
with the mesons of the nucleus, i.e. we consider the reaction:

16 16

8 9( ) (30 )p O n F          

The recoil nucleus F916 undergoes ß+-decay of electron cap-
ture (EC) to become finally again O816. With regard to nu-
clear reactions of therapeutic protons the cross-section of
oxygen is certainly most important. However, the interac-
tion with calcium (bone) and proteins (carbon) seems also to
be worthy of interest. Below we present lists of the most
important reactions with carbon and calcium. For brevity,
we do not state the decay reactions of the isotopes (detailed
listings can be found in web), but for most of them electron

capture (EC) and ß+-decay with emission of γ-quanta are
preferred reaction channels. For these reasons we have state
the symbols X in equations (31 – 31g) and equations (32 –
32h).

As already verified 2 – 3 in the case of oxygen, the nuclear
reactions presented in the listings 4.1.1 and 4.1.2 depend on
the available or residual proton energy. For this purpose we
consider the domain E > Eres up to the beginning of the as-
ymptotic behavior, i.e. the proton energy amounts to ca. 100
MeV. We refer to this energy branch of Qtot(E) as Etemperate.
(In the case of copper, the asymptotic behavior is reached at
a somewhat higher energy (ca. 150 MeV), but this element is
mainly of importance with regard to the determination of
beam-line properties). Thus in the energy domain Etemperate

the nuclear reactions according to relations (31 – 31c) and
(32 – 32d) preferably occur, whereas for E > Etemperate or E >>
Etemperate the release of clusters according to relations (31d –
31g) and (32e – 32h) are more probable. A typical case of a
cluster release is the α-particle as a secondary particle. Ac-
cording to 3 this threshold energy amounts to 100 MeV. In
the case of carbon it is increased to be 101 MeV, for calcium
it amounts to 98 MeV and for copper to 97 MeV. At about E
= 190 MeV the probability of this release of α-particles as
outcome of nuclear reactions vanishes for all cases consid-
ered here. The main difference, however, exists in the yield
of this secondary particle. We normalize total yield of
α-particles to ‘1’ for the reaction of proton with oxygen.
Then in the case of carbon we obtain a total yield of 0.97.
For calcium it amounts to 1.68 and for copper to 1.93.
Therefore it is generally correct that mainly the yield of
clusters is increasing, if the nuclear charge Z and mass num-
ber AN correspondingly increase. A previous check of
GEANT4 10 in the papers 1–3, 13, 15 revealed that this Mon-
te-Carlo code provides default reaction channels, which un-
derrate cluster formations. However, since this Monte-Carlo
code is an open system, it can be improved by the user. A
further lack of this Monte-Carlo code is that the release of
neutrons is not sufficiently accounted for, as we could verify
at a glance at the papers.11, 12 According to the present results
the release of low energy neutrons should be much more in
focus in dose calculations due to the rather high RBE.

The calculation method for the total nuclear cross-section
Qtot(E) provides a significant advantage compared to the pre-
viously published method 2, 3 : Each Gaussian distribution and
the error-function distribution with a specific energy shift
can be associated to probability distributions for the occur-
rence of some nuclear reaction types. Thus the energy shifts
now refer to threshold energies with regard to the corre-
sponding maxima and the half-breadths represent a measure
for the yield of some reaction types. Furthermore, it is possi-
ble to analyze measured curves of Qtot(E) by suitable
deconvolution procedures as worked out in.16 These convo-
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lution methods are developed with regard to linear combina-
tions of Gaussian kernels and shifts. Since there exists a con-
nection between the number of kernels and the underlying
statistics, which is strictly a non-relativistic Boltzmann dis-
tribution in the case of one Gaussian kernel and a linear
combination of different Gaussian kernels with further shifts
in the case of the Fermi-Dirac statistics, we have also ob-
tained a way to interpret nuclear reactions by the operator

formulation of Fermi-Dirac statistics.2, 16 Such statistical
models can help to calculate nuclear interaction processes in
a simpler way compared to many-body-problems of relativ-
istic quantum mechanics. The evaluation of measurement
data in clinical practice of proton therapy, e.g. the contribu-
tions of secondary particles, requires relatively simple but
reliable methods.

Listings of possible nuclear reactions of some nuclei of particular interest

Nuclear reaction types of protons with carbon and calcium (with oxygen already reported in 1 - 3).

Interactions proton – carbon:
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Interaction proton – calcium:
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Please note that X stands for further nuclear decay reactions, which preferably incorporate β+, β - decay and electron capture
(EC). In particular, the emission of positrons is associated for further radiation processes by pair annihilations.
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